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Abstract: During the last two decades, researchers have suggested that the increase of the malaria incidence rate in tea 

plantations in the Kericho district in Kenya was driven by climate change. Critics suggested that others variables could be 

involved in the increase of the malaria burden, such as HIV and human population size. Population ecologists have developed 

a simple framework which helps to explore the contributions of endogenous (density-dependency) and exogenous processes on 

population dynamics. Both processes may operate to determine the dynamic behavior of a particular population through time.
 

Briefly, density-dependency (endogenous process) occurs when the per capita population growth rate (R) is determined by its 

previous population sizes. An exogenous process occurs when some variable affects another but is not affected by the changes 

it causes. In this study we re-explore the dynamics of the malaria incidence rate in Kericho tea plantations taking into account 

the HIV incidence rate, rural population size, temperature and rainfall. We found that malaria dynamics showed signs of a 

negative endogenous process between R and malaria infectious class. We found that there was weak evidence to support the 

climate change hypothesis and that rural population size and the HIV incidence could interact to positively force malaria 

models parameters explaining the positive malaria trend observed at Kericho tea plantations in Kenya from 1979 to 2002. 
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1. Introduction 

During the last two decades, researchers have suggested 

that the increase of the malaria incidence rate in tea 

plantations in the Kericho district in Kenya was driven by 

climate change [1-10]. These studies gave way to extensive 

debates about the importance of climate in the malaria 

burden in these locations. Critics suggested that despite the 

relationship between malaria and climate is evident, 

principally between seasons, other variables could be 

involved in the increase of the malaria incidence in Kericho 

tea plantations [11-13]. Globally, malaria literature suggests 

that the positive trends in malaria could be also affected by 

HIV [14, 15], climate [1-10, 16], poverty level [16], health 

campaigns [16- 18] and human population size [19]. In this 

study we re-analyze the data from period 1979 to 2002 

(resurgence period) from Pascual el all study [4-6] and 

discuss the role of climate change, and other potential drivers 

for malaria dynamics in Kericho tea plantations. 

Malaria endemicity and the burden of this disease have 

increased at the global level during the last centuries until 

1955, when countries joined in a global effort to eradicate 

malaria [16, 17]. The use of quinine, chloroquine and indoor 

DDT reduced the malaria burden in many countries [14- 16]. 

After three decades of decline, around 1980, malaria started 

to rise and once again became a major health problem, 

principally in Sub-Saharan Africa [16, 20, 21]. 

During the same period (1980’s decade), the Human 

Immunodeficiency Virus (HIV) started to spread globally [14, 

15]. Kenya ranks in the top six HIV High Burden Countries 

[14]. HIV may increase malaria contagion, accelerate 
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progression rates from latent to infectious stage and may delay 

the recovery of infected individuals, which increases the period 

in which an infected individual may transmit malaria. In 

addition, individuals only acquire malaria immunological 

defenses following several episodes. By affecting the 

immunological system, HIV removes the acquired defenses 

increasing the susceptible pool (the population at risk) [22-26]. 

Additionally, studies already showed that prevalence of HIV in 

tea plantations could reach almost 40 % of the workers [26], 

suggesting that HIV increase could be involved on the increase 

of the malaria burden during the period ranging from 1979 to 

2002 (Figure 1). 

Malaria is a disease linked to climatological variables due 

to the aquatic life cycle of the Anopheles sp. larvae. Studies 

have pointed out that extreme climatological events (El Niño 

and La Niña) could affect malaria levels [27-29]. High 

temperatures accelerate larval development rate and the total 

number of eggs, boosting total mosquito biomass per season. 

Also, rain positively affects Anopheles sp. carrying capacity 

[30, 31]. Many studies have suggested that climate explains 

malaria seasonal fluctuations and anomalous outbreaks. 

Studies have shown an increase of temperature levels during 

the last decades in Kenya and suggested that temperature was 

the main driver of the increase of the malaria burden in the 

Kericho tea plantation (Figure 1) [1-10]. 

Kenya is a middle-income rural country [16]. The increase 

of human density in rural areas (i.e Kericho district) has many 

potential ecological effects that could increase the malaria 

burden. Increase of rural population size expends agriculture 

frontiers and in cities grow over natural rural areas. This 

expansion requires deforestation [16, 32-34]. Deforestation 

changes the aquatic food web structure where larvae develop 

part of their life-cycle, usually freeing larvae from predators. 

Deforestation may also increase the number of mosquito 

breading sites and accelerates the mosquito life cycle by means 

of an increase in local temperature, resulting in high mosquito 

population biomass and plasmodium transmission in rural 

areas and small rural cities [4-6, 32, 33], like the Kericho 

district. Alonso et al [13] suggested that although temperature 

was the main driver of malaria dynamics in Kericho tea 

plantations, temperature could interact with rural population 

size and HIV prevalence, which we will consider in this study. 

Climate change, HIV dispersion, rural population size are 

regional and global processes that could interact to explain 

the malaria dynamics in Kericho tea plantations [31]. Our 

main goal is to explore the potential interactions between 

climate, the HIV burden and rural population on the increase 

of the malaria burden in the period ranging from 1979 to 

2002 in Kericho tea plantations.  

 
Figure 1. Location of Kenya Kericho district showing the degree of deforestation (rural land, light green) and shows a degree of urbanization in rural areas at 

Kericho district. We present the Pascual data of malaria incidence rate, rainfall and temperature during the years at Kericho tea plantations. The HIV 

incidence rate and rural population size at Kenya national level, as alternative drivers of malaria dynamics at Kericho tea plantations. 
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2. Methods 

Population ecologists have developed a simple framework, 

which helps to explore the contributions of endogenous and 

exogenous processes on populations. Briefly, density-

dependency (endogenous process) occurs when the per capita 

population growth rate (R) is determined by its previous 

population sizes. An exogenous process occurs when some 

variable affects another but is not affected by the changes it 

causes. Climate variables and governmental disease control 

policies are known examples of exogenous pulse/press 

perturbations with relation to diseases. Both processes may 

operate to determine the dynamic behavior of a particular 

population through time [34-36]. Therefore, a more complete 

understanding of the dynamics of a population is achieved 

when both endogenous and exogenous processes are 

considered. Using this framework, recent studies have 

captured the trends of measles, tuberculosis and pertussis at 

city, country and global scales [37-39]. 

The ecological principles mentioned above have analogies 

in epidemiological processes. Following the introduction of an 

infected individual in a naïve population, the infected class is 

expected to grow exponentially driven by R0, the basic 

reproductive number, since there are almost unlimited 

susceptible individuals (resources). Nevertheless, as the 

infected class grows, the susceptible pool is depleted and per 

infected transmission rate declines (R0 becomes RE, the 

realized reproductive number), a process known as self-

limiting, analogous to the principle of intra-specific 

competition [37-39]. Higher infected class may increase 

contact rate enhancing transmission rate, analogous to the 

intra-specific cooperation principle. The realized that the per 

capita population rate of change (R) is the corner stone of the 

framework adopted in this study [36-43]. R can be estimated 

by the natural log differences between actual and past numbers 

of infected individuals, which are adopted in this work. 

We used a simple linear regression between the malaria 

infectious class incidence rate and its rate of change to detect 

the sign and significance of the slope parameter, which 

suggest the principle; exponential (non-significant slope), 

cooperation (positive slope) and competition (significant 

negative slope). This exploratory process will suggest the 

basic model which could capture the general positive trend of 

malaria incidence rate in the Kericho tea plantations (from 

1969 to 2002). 

RIt= Rmax – b* It-1                      (1) 

where RIt is the per capita growth rate, Rmax is maximum 

population rate of change (analogous to R0), b measures the 

impact of increasing incidence rate (It-1) on Rmax. In 

advance, we found a negative correlation between RIt and It-1., 

which can be capture by the following Ricker model: 

1
max 1

t
I

I Q
R R

K

−  = −  
  

                        (2) 

where RIt, Rmax It-1 are as above and K is the stable malaria 

incidence carrying capacity. Q measures the degree of self-

limiting around K. We also present the data from Pascual 

study using 4-month intervals. The goal is to identify distinct 

domain periods between RIt and It-1 to help to interpret non-

linear regression results. 

The effect of exogenous variables on malaria dynamics 

will be assessed using Royama methodology [40], whom 

classified three basic exogenous effects on the logistic model 

(Eq.2): vertical, lateral and non-linear effects. Vertical effects 

occur when the exogenous variable affects proportionally 

both Rmax and K, changing the intercepts (Eq. 3). Lateral 

effects occur when only the K is affected (Eq. 4), and the 

non-linear effects when the variable affects both Rmax and K, 

but disproportionally (Eq. 5). These three types of exogenous 

effects can be tested as follows [34]: 

1
max 1

t
I

t

I Q
R R

K g V

−  
= −  + ∗  

                        (3) 

1
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t
I t

I Q
R R g V

K
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  

                        (4) 

1
max 1

t t
I

I Q g V
R R

K

−   + ∗= −  
  

                       (5) 

where g is the linear coefficient that measures the effect of any 

exogenous variable on the self-limiting model parameters. 

We include HIV incidence rate, Temperature (°C), rain 

(mm) and rural population size as exogenous variables in Eq. 

3, 4 and 5. We used the HIV national incidence rate and 

national rural population size from World Bank and World 

Health Organization websites, because there are no time 

series for these variables for Kericho area. We assumed that 

national trends are a proxy to what occurs at a smaller scale 

(Kericho tea plantation). We used Temperature and rain data 

from a Pascual study [4, 5]. 

In advance, using data from a period of four months between 

observations, we found three distinct logistic growth periods 

(see Figure 2). We also chose to analyze a shorter period (1978 

to 1994), which corresponds to the second chronological logistic 

growth rate, avoiding the noise at the end of time series (1995-

2002). We compared the results from both approaches (cut and 

uncut time series) looking for consistency between results. To 

address the effects of climate variables versus HIV and Human 

population size, we first analyzed models with and without 

climate variables. Secondly, we analyzed the effects of human 

population size and HIV without climate variables, and last, we 

analyzed the interaction of all variables on the logistic model 

parameters. The best model was selected based on the Akaike 

information criteria and R
2 
(Coefficient of determination). Eqs. 1 

to 5 were fitted using the nls library in R through non-linear 

regression analysis. 

3. Results 

We found that the malaria increase incidence rate could be 

capture by the logistic growth model (Table 1). 
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Table 1. The linear regression between the malaria incidence rate (It-1) and 

the per capita rate of change (RI). The malaria dynamics showed signs of 

the self-limiting process during the study period (negative slope). 

Response 

variable 
Intercept Pendent 

Independent 

variable 

P-

value 
R2 

 (Rmax)     

RIt 0.488 -0.003 IT-1 0.0028 0.307 

 

Figure 2. Distincts dynamical domains from 1969 to 2002. First period, cruces 

(1969-1979), second period, triangle (1979-1994). Last period, open circles 

(1994-2002). The figure shows the changes in the intercepts from 1969 to 2002 

suggesting a lateral and a vertical changes from 1969 to 2002, respectivelly. 

 

Figure 3. The relationship between the malaria incidence rate in Kericho 

tea plantations and the malaria per capita rate of change (R-function) from 

1978 to 2002. 

Also, the graphical relationship between RI and It-1 

revealed three periods of logistic growth with increasing 

Rmax and carrying capacities from 1979 to 2002 using 4 

month- intervals between observations (Figure 2, 3 and 4 and 

Table 2). From the first to the second period of growth, we 

can observe a lateral effect. The Rmax of the second period is 

1.1 times higher than the first period and K is 2.5 times 

higher. Between the second and last period, we can observe a 

change which suggests a vertical or a nonlinear effect. Rmax 

in the last period is 2.013 times higher than the second 

period, and K is 4 times higher. 

 

Figure 4. The relationship between the malaria incidence rate in Kericho 

tea plantations and the malaria per capita rate of change (R-function) from 

1979 to 1994. 

Table 2. The logistic model parameter estimations using four-months 

interval data from period 1969 to 2002. It shows an almost vertical 

dynamical change from 1979-1994 to 1994-2002 (Figure 1). Bold faces are 

for significant results. 

   
Parameters 

   
Model Variable Period Rmax K Q R2 

Logistic Malaria 1969-1979 0.639 107.57 0.876 0.549 

Logistic Malaria 1979_1994 0.734 295 1.085 0.693 

Logistic Malaria 1994_2002 2.793 755 0.52 0.861 

Models only including the interaction between rain and 

temperature had lower predictability and were less 

parsimonious than models with the interaction between 

climate variables and other variables, suggesting that climate 

had a low contribution to the increase of the malaria 

incidence rate in Kericho tea plantations from 1979 to 1994 

and in 2002 (Table 3). 

Uncut and cut time series had similar results. Models with 

the interaction (lateral and vertical) between rural population 

size and HIV incidence rate performed better than models 

with climate variables and the model without exogenous 

variables (Table 3). These results suggest that these variables 

could be involved in the malaria increase burden as 

exogenous forcing on malaria endogenous model parameters 

leading to an increase in the malaria burden. These results are 

consistent with regards to the graphical R behavior changes 

with infectious class (Figure 2, 3 and 4). The models with 

non-linear effects (Eq. 5) delivered worse results (R
2
 and 

AIC) than vertical and lateral logistic models (not shown 

here). 
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Table 3. The lateral and vertical effects of the variables mentioned in the text for two periods of time (cut and uncut time series). We fixed Rmax when 

assessing lateral effects and we fixed the non-linear parameter (Q) when evaluating vertical effects. Rmax and Q were obtained from the malaria logistic 

model without exogenous variables for cut and uncut time series. AIC is the Akaike information criterion. The symbol (*) represents the interaction between 

variables. Results suggest a weak effect of climate variables and that the effects rural population size and incidence of HIV could interact to explain malaria 

model parameter changes. 

     
Paramters 

   
Model Variable Period Rmax K a Q R2 AIC 

Logistic Malaria 1979_2002 0.872 1391  0.407 0.589 22.230 

         

Lateral effect HIV 1979_2002 0.872 837 1.97E+01 0.891 0.641 21.481 

Lateral effect Rain 1979_2002 0.872 -1857 1.88E+00 0.406 0.509 24.828 

Lateral effect Temperature 1979_2002 0.872 -1637 9.42E+02 0.780 0.509 20.263 

Lateral effect Rural population 1979_2002 0.872 -883 1.09E-04 1.021 0.650 19.905 

Vertical effect HIV 1979_2002 1.221 893 8.90E-03 0.470 0.610 21.754 

Vertical effect Rain 1979_2002 0.031 1309 4.30E-04 0.470 0.543 24.447 

Vertical effect Temperature 1979_2002 2.221 2000 -8.20E-01 0.470 0.394 26.616 

Vertical effect Rural population 1979_2002 0.355 37 7.42E-08 0.470 0.666 19.007 

Lateral effect Rain*Temperature 1979_2002 0.872 -388 3.20E-05 0.302 0.459 23.429 

Lateral effect Rain*Temperature*Rural 1979_2002 0.872 -428 2.62E-09 0.755 0.649 20.033 

Lateral effect Rain*Temperature*HIV 1979_2002 0.872 835 5.97E-04 0.858 0.629 20.920 

Lateral effect Rain*Temperature*Rural*HIV 1979_2002 0.872 850 2.49E-10 0.920 0.648 19.994 

Lateral effect HIV*Rural 1979_2002 0.872 850 8.19E-07 0.953 0.636 20.574 

Vertical effect Rain*Temperature 1979_2002 0.945 653 8.70E-07 0.470 0.547 21.675 

Vertical effect Rain*Temperature*Rural 1979_2002 0.447 1129 1.41E-11 0.470 0.680 20.464 

Vertical effect Rain*Temperature*HIV 1979_2002 1.157 894 2.52E-07 0.470 0.630 18.208 

Vertical effect Rain*Temperature*Rural*HIV 1979_2002 1.212 887 1.14E-15 0.470 0.650 18.239 

Vertical effect HIV*Rural 1979_2002 1.288 884 4.12E-10 0.470 0.633 20.712 

Logistic Malaria 1979_1994 0.572 1057 
 

1.867 0.747 5.994 

Lateral effect HIV 1979_1994 0.572 887 1.36E+01 2.139 0.815 4.042 

Lateral effect Rain 1979_1994 0.572 368 3.82E-01 1.573 0.704 7.235 

Lateral effect Temperature 1979_1994 0.572 -3394 2.38E+02 2.021 0.720 7.662 

Lateral effect Rural population 1979_1994 0.572 -242 7.01E-05 2.691 0.827 0.847 

Vertical effect HIV 1979_1994 0.591 904 1.40E-02 1.867 0.856 -1.861 

Vertical effect Rain 1979_1994 0.122 461 2.41E-04 1.867 0.706 7.570 

Vertical effect Temperature 1979_1994 0.132 381 1.31E-04 1.867 0.650 5.948 

Vertical effect Rural population 1979_1994 0.655 860 4.51E-03 1.867 0.844 -0.777 

Lateral effect Rain*Temperature 1979_1994 0.572 414 1.90E-02 1.599 0.714 7.565 

Lateral effect Rain*Temperature*Rural 1979_1994 0.572 384 1.00E-09 1.813 0.765 4.805 

Lateral effect Rain*Temperature*HIV 1979_1994 0.572 884 4.16E-04 2.074 0.775 4.703 

Lateral effect Rain*Temperature*Rural*HIV 1979_1994 0.572 889 5.40E-05 1.980 0.783 3.459 

Lateral effect HIV*Rural 1979_1994 0.572 897 6.34E-07 2.113 0.856 4.160 

Vertical effect Rain*Temperature 1979_1994 0.079 365 1.43E-05 1.870 0.716 7.310 

Vertical effect Rain*Temperature*Rural 1979_1994 0.544 658 3.40E-10 1.870 0.789 1.386 

Vertical effect Rain*Temperature*HIV 1979_1994 0.578 909 3.80E-07 1.870 0.802 1.790 

Vertical effect Rain*Temperature*Rural*HIV 1979_1994 0.579 918 1.00E-14 1.870 0.811 2.022 

Vertical effect HIV*Rural 1979_1994 0.590 913 6.40E-10 1.870 0.803 -1.188 

 

4. Discussion 

The results suggest that other variables were more 

important than climate change in terms of the increase of 

malaria burden in Kericho tea plantations, as initially 

proposed in many studies from Kericho. In this study, we 

will discuss the manner in which the effects of HIV and rural 

population size could interact to explain the changes in 

model parameters. 

Perhaps human population size could be the most 

important variable, because of its many effects. Rural 

population size increases the contact rate between infected 

and susceptible individuals by adding individuals inside the 

natural flying range of mosquitos in households, villages and 

small rural cities (such as the Kericho district); creates 

mosquitos breeding sites; leads to higher transport of 

individuals between localities dispersing and amplifying the 

geographical range of malaria endemicity and increases 

pollution (favoring mosquito abundance) in rural areas [13, 

16, 19, 31-34, 40-44]. All these effects could increase malaria 

transmission and burden in Kericho tea plantations. 

The HIV spread completes the scenario. HIV grew 

exponentially for most part of the study period at the country 

level in Kenya. One potential effect of a higher malaria 

burden is that individuals only acquire malaria 

immunological defenses following several episodes of re-

infection. The spread of HIV incidence in rural populations 

could remove this potential positive effect (i.e. herd 

immunity). The interaction between malaria and HIV is 

suspected to be synergetic, because malaria-infected 

individuals show an increase of the HIV host cells in the 

immunological system. This could produce a longer period of 

the acute phase of HIV, increasing infectivity between 
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individuals and susceptibility to future malaria infections. 

Besides the synergy, the effects of HIV seem to be greater 

than the effects of malaria on the spread of HIV, because the 

infection period and AIDS stage may last for years reducing 

the immune defense efficiency [24, 25]. The spread of HIV 

expands the population at risk of contracting malaria [13-16, 

21-26]. The effects of HIV could aggravate the effects of 

increasing rural population size and regional ecological 

changes affecting the model parameters of malaria. 

We could even propose a simpler model only including 

rural population size as a vertical effect. The increase of 

population size could allow the spread of HIV increasing the 

pool of the susceptible population at risk to contract malaria. 

Additionally, habitat degradation near Kericho district could 

favor Anopheles increase. We believe that habitat degradation 

driven by the mentioned effects of population size had 

stronger effects than climate change in the malaria dynamics 

in Kericho tea plantations. 

We did not want to rule out climate change. We believe 

that climate could always provide an initial set of potential 

variables which could influence the dynamics of malaria. The 

main factor is probably temperature, which can accelerate 

larval development rate (including more life-cycles per 

season) and reduce the differences between seasons. Local 

rises in temperature could interact with deforestation and the 

effects of HIV to explain the higher malaria incidence rate 

peaks at the end of the time series from Kericho tea 

plantations [1-10]. For example, Alonzo [13] found that rise 

of temperature in Kericho tea plantations was indeed the 

main driver behind the rise of malaria burden. But they also 

suggested that temperature could interact with the increases 

of the HIV burden and human population size to explain the 

malaria positive trends, as we tested and confirmed in this 

study. 

Despite the observed increases in temperature, the malaria 

incidence rate in Kericho tea plantations declined from 2002 to 

2010, which is suspected to be related to investments in 

malaria control programs in Kenya [14-18, 20, 29-31, 43-44]. 

In 2000, several countries joined in a global effort to halt and 

begin to reverse the incidence of malaria by 2015 (Millennium 

Development Goals 6- Target 6C). Kenya received 

international funding and developed efficient national 

strategies to achieve the Millennium Development Goals. 

Kenya invested in Artemisinin-based Combination therapy 

(ACTs), increased the distribution of insecticide-treated 

mosquito nets (INTs), rapid diagnostic tests (RDTs) and the 

application of Indoor Residual Spraying (IRS). Studies have 

demonstrated that investments in malaria commodities like 

ITNs, IRS, ACTs and RDTs reduced the malaria burden in 

many regions including the Sub-Saharan region. The increase 

of malaria commodities could explain the decreases of the 

incidence rate of malaria at district and at regional levels, 

despite the rises of temperature, population size and regional 

ecological changes [14-18, 20, 29-31, 43, 44]. 

Additionally, literature suggests that declining HIV could 

be also involved in the decrease of the malaria burden. 

Between 2001 and 2011, HIV incidence was reported to have 

declined by >50% across 13 countries in sub-Saharan Africa. 

In 2004, USA made a massive investment to increase ART 

(Antiretroviral Therapy) coverage in Sub-Saharan Africa [2, 

3]. ART is effective in preventing mother-to-child 

transmission and sexual transmission of HIV within couples. 

These correlated chronologies (malaria and HIV decline) 

may suggest that the malaria decline rate could also be 

related to HIV investments and interventions (ART coverage, 

education level, prevalence of male circumcision and 

condom use) along with the ITNs, ACTs and IRSs coverages 

during this period [14-18]. This suggests that efforts to 

control two linked diseases could interact in order to achieve 

the malaria Millennium Development Goals 6- Target 6C. 

5. Conclusion 

Here, we applied the Population Ecology Theory to re-

explore malaria incidence rate dynamics in Kericho tea 

plantations. We present a distinct scenario to explain that 

others large-scale phenomena (HIV and rural population size) 

could have influenced the local malaria dynamics at a higher 

level than climate change from 1979 to 2002. Despite the 

many advances in malaria commodities, which could 

eradicate malaria from Kenya, the deforestation effects and 

high HIV burden could slow down the malaria burden 

decline and allow new epidemics episodes, under a potential 

scenario of any type of failure of the malaria control 

programs. 

The framework employed is based on the realized per 

capita population rate of change (RI), which is surrounded by 

plausible ecological principles and is hence an advantageous 

starting point to explore disease dynamics. Any government 

may disentangle RI in its components (new per capita 

infections and per capita mortality), explore which of them 

are most important for RI trends and explore the 

contributions of endogenous and exogenous processes. 

Hence, we suggest that this approach, based on simple 

principles based on population ecology theory, could be 

included as a supplement to WHO reports with minimal cost- 

and time-demanding efforts, which could provide insights 

and hypotheses and may facilitate the testing and estimation 

of the drivers of disease dynamics. 
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